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Control of blade flutter by use of a nonrigid wall may have several advantages compared with
the existing method of suppressing blade flutter; but it indeed leads to numerous theoretical
problems which have never been clearly elucidated by the existing theories. In the present
investigation a new lifting surface model has been suggested based on the application of
generalized Green’s function theory and double Fourier transformation technique, which is
expressed as various upwash integral equations and the corresponding kernel function. In
particular, it is found that the change of wall boundary condition not only affects the
eigenvalues of the system but also the eigenfunction normalizing factor in comparison with a
rigid boundary condition, and it is these variations that finally affect the flow and acoustic
field. In addition, the numerical results show that whether a nonrigid wall has positive or
negative effect on suppressing blade flutter will mainly depend on what admittance value the
wall possesses. It is clear that this conclusion has two implications. One is that there is indeed
some possibility for designing a liner for suppressing blade flutter. The second is that modern
jet engines using a nonrigid wall or liner to suppress the noise can introduce a detrimental
effect on blade flutter stability. # 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

During the past two decades, numerous researchers (Bendiksen 1988, 1993; Marshall
& Imregun 1996) have investigated the feasibility of suppressing or controlling flutter in
turbomachinery rotors. Most of the proposed methods fall into three main categories: (i)
mistuning, (ii) aeroelastic tailoring and (iii) dry friction damping or mode shape control. In
addition to the above methods which have received great attention, a novel way of
controlling blade flutter by use of a nonrigid wall or soft wall was also suggested by
Watanabe and Kaji (1984) and Namba et al. (1984), respectively. Their research objective
was to try to find flutter-suppressing liners. For this purpose Watanabe & Kaji (1984) used
a three-dimensional semi-actuator disk model to evaluate the effects of a nonrigid wall on
the aerodynamic damping which is a key factor in determining whether the blade flutters
or not. Namba et al. (1984) treated the nonrigid wall as unsteady equivalent surface mass
source singularities developed by Namba & Fukushige (1982) and then obtained
numerical results by solving three-dimensional linearized Euler equations under a hard
0889-9746/02/050627+22 $35.00/0 # 2002 Published by Elsevier Science Ltd.
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wall condition. Their results all show that a nonrigid wall can influence the unsteady
pressure distribution and the aeroelastic stability of blades, which depends on the
aerodynamic and geometrical parameters of the cascade and the range of the acoustic
admittance value of the wall. However, no further work has been done in this direction
since then.
In fact, if this idea is found to be feasible, there will be at least two advantages. On the

one hand, it can be shown that the application of flutter-suppressing liners will not cause
any apparent aerodynamic loss or weight penalty compared with the existing methods. On
the other hand, as is well known, in recent years there have been studies on the active
control of isolated airfoil flutter, using loudspeakers or piezoelectric materials as the
actuators. From the viewpoint of application, it is very impractical to directly apply the
same technology as that in the active control of isolated airfoil flutter to the rotating blade
in compressors. So, a new approach is required for the active control of blade flutter in
compressors. However, for a given liner with honeycomb structure which is widely used to
suppress the noise generated by jet engines, the impedance is in general fixed. So,
there would be no possibility for active control. However, it has been found that there is a
liner with adjustable impedance which consists of a perforated plate and the bias flow
through the holes (Bechert 1980; Howe 1979a,b). Recent fundamental experimental and
theoretical work (Dowling & Hughes 1992; Hughes & Dowling 1990; Jing & Sun 1999) has
shown that such liner would be a good prospect for many applications (Zhao & Sun 1999).
There is reason, therefore, to believe, assuming the availability of flutter-suppressing liner
with adjustable impedance, that it would be possible to realize the active control of
compressor blade flutter. To achieve this goal, considerable research on the following
items is needed.
First, the essence of this problem is actually to change the aerodynamic damping of a

blade through the variation of the wall boundary condition. Hence, the accurate unsteady
aerodynamic model for a nonrigid wall condition is one problem of interest. However, it is
noted that the existing lifting surface theories (Namba 1977; Lordi & Homicz 1981;
Shulten 1984) for unsteady aerodynamics and aeroacoustics of turbomachines, which in
general are expressed in the form of an upwash integral equation, have all utilized the
orthogonality of the eigenfunctions under the boundary condition of a hard wall.
However, Tester (1972) and Zorumski (1974) have shown the eigenfunctions no longer
exhibit the orthogonality property for a lined duct containing uniform mean flow. In fact,
to the authors’ best knowledge, under the condition of a nonrigid wall nobody has given
the upwash integral equation for unsteady aerodynamics and aeroacoustics of
turbomachines up to now. On the other hand, it is reasonable to believe that the upwash
integral equation can be obtained so long as the corresponding Green’s function is given.
Hence, the core of the problem is how to derive a correct Green’s function under a soft
wall condition. This actually introduces a problem which has not been fully resolved even
for the purely acoustic problem (Tester 1972; Sijtsma 1995). There is very limited work on
this subject. The first attempt was carried out by Tester (1972), who derived a Green’s
function for a duct with an arbitrary locally reacting admittance on one wall by using a
fundamental method given by Brekhovskikh (1960). Also, due to the limitations of the
methods used by him, the assumption that the distance to the wall boundary from either
observer point or source point is larger than half a wavelength has to be imposed on the
boundary condition. However, it is worth noting that Zorumski (1974) presented an
important clue towards the derivation of Green’s function for a lined duct, in which the
boundary condition is directly coupled with the basic equations by using Fourier
transforms. Besides, this work has actually verified there is a solution which consists of
non-orthogonal eigenfunctions. In fact, the mode-matching approach widely used in duct
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acoustics is based on this theoretical frame. Hence, what is done in the present study is to
find such solution by using an effective mathematical tool.
Secondly, it has been known that the boundary condition of a nonrigid wall influences

the flow field or acoustic field theoretically by introducing the variations of the
eigenvalues. For a lined duct, the eigenvalues are generally complex. Thus the calculation
of the accurate eigenvalues has been a subject that has received considerable attention (Ko
1973; Eversman 1975, 1977). In addition, for the present problem the eigenvalue equation
describing the boundary condition differs from that used in pure duct acoustics due to the
characteristics of a moving sound source. Hence, the derivation of the eigenvalue equation
and an effective approach for the calculations of the eigenvalues is a relevant problem.
Finally, the boundary condition of a nonrigid wall is described by acoustic impedance

or admittance. Under the condition of grazing flow and high sound intensity, development
of a reasonable acoustic model of the wall is an important issue.
In the present study, the emphasis is placed on the first two problems. First, the double

Fourier transform technique is applied to obtain the Green’s function for a duct with an
arbitrary locally reacting admittance on one wall. Subsequently, an upwash integral
equation is derived by using generalized Green’s function theory and solving three-
dimensional Euler equations for a given cascade geometry. It can be shown that by letting
the admittance of the wall become zero the results can be reduced to those obtained by
previous investigators for the hard wall case. On the other hand, the eigenvalue equation
describing the boundary condition has been transformed into a nonlinear ordinary
equation, which is then solved by a fourth-order Runge–Kutta scheme. The computa-
tional results of the eigenvalues show very good agreement with the existing results for a
nonrigid wall. Based on the above verification, the calculation is then extended to
investigate the effect of a nonrigid wall on the flow of a stator and rotor blade row. It is
found that the change of wall admittance will lead to remarkable effects on both lift,
moment coefficient and aeroelastic stability of a blade row. Finally, concluding remarks
are given on the basis of the present theory and the corresponding numerical simulation.

2. FLOW MODEL

2.1. Basic Equations

The cascade flow model used in this analysis is shown in Figure 1, all variables being
physical or dimensional ones. Later scale lengths will be taken with respect to the
semichord b for convenience. In addition, the following assumptions are made: (i) the
system is three-dimensional, with a mean flow between two infinite parallel plates, as
shown in Figure 1; especially the lower plate (hub side) is assumed rigid while the upper
plate (tip side) is assumed to have a finite acoustic impedance; (ii) the blades are flat plates
of negligible thickness; (iii) the mean angle of incidence is zero; there is no steady blade
loading and the mainstream flow passes through the cascade undeflected; (iv) all
perturbations from the uniform mean flow are small, so that the flow equations may be
linearized and the principle of superposition applied to the solutions obtained; (v) the
unsteady blade loading at the trailing edge is finite; this is the statement of the Kutta–
Joukowski condition for unsteady flow; (vi) the flow is subsonic.
In addition to the above assumptions, it has been noted that, when the wall admittance

has a positive imaginary part, an unsteady mode will be triggered, which is related to
Helmholtz instability waves (Tester 1972; Rienstra 1986). In the present analysis, the effect
of unstable surface modes will be ignored. So, the perturbation pressure p induced by the
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Figure 1. Schematic of flow model.
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motion of the blade is then governed by the wave equation

ð1�M2
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where Mr is the mean flow Mach number in x-direction as shown in Figure 1, p is the
fluctuating pressure, a0 is the velocity of sound.
The boundary condition is assumed to satisfy

@p

@n
þ bðyÞp ¼ aðy; tÞ if y on the tip side of duct;

@p

@n
¼ 0 if y on the hub side of duct:

ð2Þ

The Green’s function of equation (1) satisfies
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The corresponding boundary condition is

@G

@n
þ bðyÞG ¼ 0 if y on the tip side of duct;

@G

@n
¼ 0 if y on the hub side of the duct:

ð4Þ
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According to the generalized Green’s function theory (Goldstein 1976), the solution of
equation (1) will be able to be expressed as

pðx; tÞ ¼
Z T

�T

dt
Z
A

G
@

@n
þ

Vn

a20

D0

Dt

� �
pðy; tÞ;

�

� pðy; tÞ
@

@n
þ

Vn

a20

D0

Dt

� �
Gðy; tjx; tÞ

�
dSðyÞ: ð5Þ

2.2. Solution of Green’s Function

Suppose Go represents the Fourier transforms of Green’s Function in equation (3).
Introducing the coordinate transforms x ¼ x=b, Z ¼ ybr=b, z ¼ zbr=b and then substitut-
ing Go ¼ G0

oe
iKMrx into equation (3) yields (Morse & Feshbach 1953)

G0
o ¼ A cosKqz0 þ BsinKqz0

�
e�i½otþðaþKMrÞxþbZ	

bKq

cosKqz0sinKqz; z04z

cosKqzsinKqz0; z05z;

(
ð6Þ

where

K ¼
ob

a0b
2
r

; ð7Þ

br ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

r

q
: ð8Þ

To determine the constants A and B, the concrete expression of the boundary condition
defined in equation (2) is needed.

2.3. Boundary Condition for a Lined Duct

The liner can be modelled by a vortex sheet separating the uniform mean flow region
within the duct from the no-flow region in the liner (Ko 1973). The impedance boundary
condition is then applied on the no-flow side. The two regions are coupled by matching the
pressure p and the particle displacement xp. From equation (6), it can be assumed that the
displacement be of the form

xp ¼ xpae
i½otþðaþKMrÞx0þbZ0	: ð9Þ

However, if the relative movement between the wall and the blades is considered, laboratory-
fixed coordinates will have to be used. So, the following transformations are needed:

x ¼ x0cos yþ ðy0 þ OrmtÞ siny;

y ¼ �x0sinyþ ðy0 þ OrmtÞ cos y;

z ¼ z0; ð10Þ

where O and rm represent the rotating speed of the rotor and the mean radius of the rotor,
respectively.
Substituting equation (10) into equation (9) yields

xp ¼ xpae
iðo0tþa0x0þb0y0Þ; ð11Þ
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where

a0 ¼
aþ KMr

b
cos y; ð12Þ

�b
br
b
sin y;b0 ¼

aþ KMr

b
sin yþ b

br
b
cos y; ð13Þ

o0 ¼ oþ ðb0rmÞO: ð14Þ

With the pressure and displacement matching conditions on both sides of the liner (Ko
1973), it can be shown that

br
b
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þ ibak

0
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k00
MyÞ

2Go ¼ 0; ð15Þ

where

k00 ¼
o0
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¼
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: ð16Þ

2.4. Determination of Green’s Function

Let

Dz0 ðGoÞ ¼
br
b
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Since

@G
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¼ 0; ð18Þ

it can be verified that

G ¼
1
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�1
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( )
eioðt�tÞþiðaþKMxÞðx0�xÞþibðZ0�ZÞ da db do: ð19Þ

2.5. Derivation of Integral Equation

According to the boundary condition described in equation (17), it can be shown that the
contribution from both upper and lower walls to the sound pressure at any point of the
space surrounded by the walls will be zero. So, the only remaining contribution to sound
pressure production is related to the blade rows. Under such conditions, it can further be
shown that equation (5) will become

pðx; tÞ ¼
Z T

�T

dt
Z
Adb

�p
@G

@n

� �
dSðyÞ; ð20Þ

where Adb is the periphery of a blade which consists of the upper surface and the
lower surface of a blade. Besides, n is the normal to the surface Adb directed into the
blade.
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Let

Dpðx0; z0; tÞ ¼ p�ðx0; z0; tÞ � pþðx0; z0; tÞ; ð21Þ

where Dp is the pressure difference between the lower and upper surface of a blade.
Assume the blade force changes with time dependence eðiobtÞ, i.e.

Dpðx0; z0; tÞ ¼ D %ppðx0; z0Þe
iobt; ð22Þ

hence

pðx; tÞ ¼ �
Z T

�T

dt
Z
Ab

Dpðx0; z0; tÞ
br
b

� �
@G

@Z0
dSðyÞ; ð23Þ

where Ab is the upper surface or the lower surface of a blade.
The theory of residues can be used to evaluate the inverse transforms of equation (23).

In fact, if let DhcosKqz0 ¼ 0, the poles exist in the b-plane, which are, respectively,

b ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

b � a2 � K2
q

q
; ð24Þ

then, if z0 � z > 0, a contour which circles the upper half of the b-plane is used and, if
z0 � z50, a contour circling the lower half is used. Hence, it can be further shown that

Kq
@DhðcosKqz0Þ

@b
¼ 2b

brKqh

b cosKqh

1

2
1þ qh

2Kqh
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; ð25Þ

where
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and

DhðsinKqz0Þ ¼
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: ð28Þ

So, equation (23) becomes
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where

sgnðxÞ ¼
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b� ¼ �
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q
; ð32Þ
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q

q
: ð33Þ

Let

%pp ¼ � sgnðZ� Z0Þ
br
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As shown in Figure 1

x0m ¼ x0 þmh1; m ¼ 0;�1;�2;    ; ð35Þ

Z0m ¼ mh2br;m ¼ 0;�1;�2;    ;

so, for the mth blade,

%ppm ¼ � sgnðZmÞ
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where

Zm ¼ Z�mh2br: ð37Þ

Assume

D %ppmðx0m; z0mÞ ¼ D %pp0ðx0; z0Þe
ims; ð38Þ

where s is called the interblade phase angle. if the complete solution to equation (1) is
expressed simply as a sum over all blades of function %ppm, then
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#
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The corresponding upwash integral equation can therefore written as

%vvðx; Z; zÞ
Ur

¼
Z 1

0

Z 1

�1
f ðx0; z0ÞKðx� x0; Z; zjz0Þ dx0 dz0; ð41Þ

where

f ðx0; z0Þ ¼
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r0U2
r

; ð42Þ
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By letting Z ! 0, an integral equation for the pressure across the 0th blade in terms of
the known upwash velocity on the blade surface can be expressed as

%vvðx; 0; zÞ
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where
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It can further be shown that
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where

D� ¼ ðGþ h1aÞ þ h2brb
�; ð47Þ

Dþ ¼ ðGþ h1aÞ þ h2brb
þ; ð48Þ

G ¼ s� KbMrh1: ð49Þ

At first glance it might appear that the integrand in this expression possesses branch points

due to the appearance of the radical
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

b � a2 � K2
q

q
. However, it can easily be verified by
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q
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K2
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q

q
that this function depends only on its

square so that the branch points are therefore ‘‘cancelled’’ and the integrand possesses
only poles of the integrand at av ¼ Kb=Mr and at the points where D� ¼ 2np for
n ¼ 0;�1;�2; . . .. However, it follows from equations (47) and (48) that the latter points
are determined by
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q
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When x0 � x50, the contour must be closed in the lower half of the a-plane and when
x0 � x > 0 in the upper plane. Hence, upon evaluating the residues it can be shown that for
the vortex wave propagating downstream (x0 � x50)

av ¼
Kb

Mr
: ð53Þ

The corresponding kernel function can be expressed as

Kðx� x0; zjz0Þ ¼
br
2

Xþ1

q¼1
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Lv

bvsinðh2brbvÞe
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cosðh2brbvÞ � cosðGþ avh1Þ
; ð54Þ

where

bv ¼
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K2

b � a2v � K2
qv

q
:

Since the wavelength of the pressure wave and the vortex wave are different from each
other, it can be assumed that vortex wave will not be influenced by the wall admittance like
the pressure wave. Because of this it can be shown that

Kqv ¼
pðq� 1Þ

h
¼

pðq� 1Þb
Hbr

; q ¼ 1; 2; 3; . . . ; ð55Þ

Lv ¼
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(
ð56Þ

(i) for the downstream pressure wave (x0 � x50), the kernel function is
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�iðb2r Kb=MrÞðx�x0Þ

cosðh2brbvÞ � cosðGþ avh1Þ

þ
b2r h2
2d2

Xþ1

n¼�1

Xþ1

q¼1

cosKqzcosKqz0
Lðaþn ; b

�
n Þ

ðK2
b � aþ

2

n � K2
q Þe

�iðaþn �KbMrÞðx�x0Þ

ðaþn þ Gnh1=d2Þðaþn � Kb=MrÞ
; ð57Þ

where

Lðaþn ;b
�
n Þ ¼

1

2
1þ

sin2Kqh

2Kqh

� �
þ L1ðaþn ; b

�
n Þ þ L2ðaþn ;b

�
n Þ

�
	; ð58Þ

L1ðaþn ;b
�
n Þ ¼ �

ibaMr

aþn hbr
1þ

aþ
0

n

k00
Mx �

b�
0

n

k00
My

 !
cos2Kqh; ð59Þ

L2ðaþn ; b
�
n Þ ¼

ibaMt

2brh
1þ

aþ
0

n

k00
Mx �

b�
0

n

k00
My

 !2
sin y
aþn

�
brcos y
b�n

� �
cos2Kqh; ð60Þ

aþn ¼ �
Gnh1

d2
þ

brh2
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

b � K2
q �

Gn

d

� �2s
; ð61Þ

b�n ¼ �
Gnh2br
d2

�
h1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

b � K2
q �

Gn

d

� �2s
; ð62Þ
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aþ
0

n ¼
1

b20
�MxKt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

t � b20 ðb�n Þ
2 þ K2

q

h ir� �
; ð63Þ

Kt ¼ k0b �
ðs� 2pnÞMy

d 0 ; ð64Þ

k0b ¼ kb þ
ðs� 2pnÞMt

d 0 ; ð65Þ

b�
0

n ¼ �
s� 2pn

d 0 ; ð66Þ

d 0 ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h22

q
; ð67Þ

K 0
q ¼

br
b
Kq; ð68Þ

for the upstream pressure wave (x0 � x > 0), the kernel function is

Kðx� x0; zjz0Þ ¼
b2r h2
2d2

Xþ1

n¼�1

Xþ1

q¼1

cosKqzcosKqz0
Lða�n ;b

þ
n Þ

ðK2
b � a�n 2� K2

q Þe
�iða�n �KbMrÞðx�x0Þ

ða�n þ Gnh1=d2Þða�n � Kb=MrÞ
: ð69Þ

where

Lða�n ;b
þ
n Þ ¼

1

2
1þ

Kqh

2Kqh

� �
þ L1ða�n ;b

þ
n Þ þ L2ða�n ;b

þ
n Þ

� �
; ð70Þ

L1ða�n ;b
þ
n Þ ¼ �

ibaMr

a�n hbr
1þ

a�n
k00

Mx �
bþn
k00

My

� �
cos2Kqh; ð71Þ

L2ða�n ;b
þ
n Þ ¼

ibaMt

2brh
1þ

a�n
k00

Mx �
bþn
k00

My

� �2
sin y
a�n

�
brcos y
bþn

� �
cos2Kqh; ð72Þ

a�n ¼ �
Gnh1

d2
�

brh2
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

b � K2
q �

Gn

d

� �2s
; ð73Þ

bþn ¼ �
Gnh2br
d2

þ
h1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

b � K2
q �

Gn

d

� �2s
; ð74Þ

a�n ¼
1

b20
�MxKt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

t � b20 ðbþn Þ
2 þ K20

q

h ir� �
; ð75Þ

bþn ¼ �
s� 2pn

d 0 : ð76Þ

3. RESULTS AND DISCUSSIONS

3.1. Calculation of Eigenvalue

As indicated above, the eigenvalues will be given by

DhðcosKqz0Þ ¼ 0: ð77Þ
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For soft walls with rotor blade rows, equation (77) can be derived as

K 0
q

k00

� �
tan k00H

K 0
q

k00

� �
¼ iba 1þ

a0

k00
Mx �

b0

k00
My

� �2
: ð78Þ

One considers the eigenvalue K 0
q=k

0
0 to be a function of some parameter, Zz. Assume ba

to be function of this parameter. If equation (78) is differentiated with respect to Zz and
combined, then the following single ordinary differential equation results:

@

@Zz

K 0
q

k00

� �
¼

ibaf ½1þ a0=k00Mx � b0=k00 My	2

Ats þ 2ibaðZzÞ½1þ a0=k00Mx � b0=k00My	Ap

; ð79Þ

where

Ap ¼
�MxðK 0

q=k
0
0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKt=k00Þ
2 � b20 ðb0k00Þ

2 þ ðK 0
qk

0
0Þ
2

h ir ; ð80Þ

Ats ¼ tank00H
K 0

q

k00

� �
þ k00H

K 0
q

k00

� �
sec2k00H

K 0
q

k00

� �� �
: ð81Þ

On the other hand, the above equations have used the expression baðZzÞ ¼ Zzbaf , 05Zz51.
Therefore, if equation (79) is integrated on 05Zz51, a hard-wall eigenvalue being used as
the initial value, then at Zz ¼ 1 the solution to equation (79) will be an eigenvalue for the
condition baf .

3.2. Solution of Integral Equation

The integral equation (44) can be reduced to a set of algebraic equations for the unknowns
f ðx0; z0Þ. Any standard matrix package that handles equations with complex coefficients
can be used to solve these equations.

3.3. Comparison with Eversman’s Eigenvalues

As has been mentioned earlier that the boundary condition of a nonrigid wall takes effect
on the flow field or acoustic field theoretically by the variation of eigenvalues; therefore,
how to obtain accurate eigenvalues will be of particular value and theoretical importance.
As a special case of solving the present eigenvalue equation, Table 1 gives the comparison
between Eversman’s results and that from present program under the same conditions. As
shown in the table, the results agree with each other very well.

3.4. Comparison with Compressible Results with Hard Walls

When the wall admittance tends to zero, one of the theoretical results in the present
analysis is the upwash velocity integral equation for the hard wall with kernel function
given by equations (57) and (69). On the other hand, it is noted that the radial standing
wave will have no contribution to the integration of blade pressure distribution. So, under
such condition, it can be concluded that the result of solving three-dimensional integral
equation for a hard wall will be the same as that from the two-dimensional model if the



Table 1

Calculation of eigenvalues

Mode Starting value a
k0

Eigenvalue1 a
k0

Eigenvalue2 a
k0

1þ 00+i00 1142+i0217 11416+i02170
1� 00+i00 0523+i0353 05225+i03526
2þ p+i00 4158�i0781 41580�i07814
2� p+i00 2388+i0312 23881+i03117
3þ 2p+i00 4306�i1955 43060�i19551
3� 2p+i00 5243�i0081 52433�i00805
4þ 3p+i00 7857�i0478 78572�i04778
4� 3p+i00 8214�i0165 82136�i01650
5þ 4p+i00 11046�i0326 110456�i03264
5� 4p+i00 11248�i0170 112485�i01702
6þ 5p+i00 14195�i0248 141954�i02481
6� 5p+i00 14326�i0156 143256�i01561
7þ 6p+i00 17336�i0200 173365�i01998
7� 6p+i00 17427�i0140 174265�i01396
8þ 7p+i00 20475�i0167 204752�i01671
8� 7p+i00 20541�i0125 205409�i01247
9þ 8p+i00 23613�i0144 236133�i01435
9� 8p+i00 23663�i0112 236632�i01120
10þ 9p+i00 26751�i0126 267515�i01257
10� 9p+i00 26791�i0101 267906�i01014
1The results from Eversman (1977)
2The results from the present program.

Note: The corresponding parameters are Mx ¼ �05;My ¼ 0;Gn ¼ 0; k0H ¼ 10; ba ¼ 072� i042, respectively.
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blade lift and moment coefficients are defined as

CFq ¼
1

r0Ur %vvbHb

Z 1

0

Z p

0

D %ppðx0; z0Þ dx0 dz0; ð82Þ

CMq ¼
1

r0Ur %vvbHb2

Z 1

0

Z p

0

x0D %ppðx0; z0Þ dx0 dz0; ð83Þ

for a bending vibration, and

CFa ¼
1

r0U2
r atHb

Z 1

0

Z p

0

D %ppðx0; z0Þ dx0 dz0; ð84Þ

CMa ¼
1

r0U2
r atHb2

Z 1

0

Z p

0

x0D %ppðx0; z0Þ dx0 dz0 ð85Þ

for a torsional vibration, where %vvb represents the amplitude of upwash velocity due to
bending vibration, while at is the amplitude of the angular displacement due to torsional
vibration of a blade.
According to the above definition Table 2 gives the results of solving the present three-

dimensional integral equation and those from Smith (1972), which shows very good
agreement between each other.



Table 2

Lift and moment coefficients

l Bending Torsion

CFq CMq CFa CMa

10 �07191+i00672 01509�i01405 �08236�i00840 01824�i01483
�07190+i00670 01511�i01405 �08235�i00838 01825�i01482

12 �07502+i00960 01328�i01288 �09048�i00634 01734�i01934
�07500+i00957 01329�i01287 �09044�i00636 01735�i01932

14 �03470+i04620 �00269�i01198 �05147�i04997 �00257�i02328
�03473+i04618 �00267�i01199 �05149�i04992 �00253�i02327

Notes: The first row gives results from Smith (1972) for agiven reduced frequency l, the second row is the
results of the present program Also, y ¼ 0;s ¼ p;Mr ¼ 05, space/chord ¼ 38.

0                 1                2                 3                 4                 5 6                 7
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

32

1

M
om

en
t  

co
ef

fic
ie

nt
, C

M
�r

M
om

en
t  

co
ef

fic
ie

nt
, C

M
�i

0                 1 2                 3 4                 5 6                 7

-0.2

-0.1

0.0

0.1

3

2
1

Stable

Unstable

Interblade  phase  angle, σ (rad)

(a)

(b)

Figure 2. Effect of interblade phase angle on the moment coefficient due to torsional motion under various
wall admittances: 1. hard wall; 2. soft wall, ba ¼ ð015;�009Þ; 3. soft wall, ba ¼ ð035; 010Þ. Besides, l ¼ 01,
y ¼ 358, space/chord=38, span/chord=40, Mr ¼ 05. These coefficients are referred to an axis position at the

leading edge point.
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3.5. Numerical Results for a Stator Blade Row

The moment and lift coefficients are plotted as a function of interblade phase angle in
Figures 2 and 3. Perhaps the most striking feature of these plots is that the change of wall
admittance will lead to a very prominent effect on both the moment and lift coefficients,
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Figure 3. Effect of interblade phase angle on the lift coefficient due to torsional motion under various wall
admittances. The other conditions are the same as in Figure 2.
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compared with the results for hard walls. Furthermore, it is well known that the imaginary
part of the moment coefficient CMai will determine whether the blade flutters or not, i.e. if
CMai50, the system is stable, otherwise it is unstable. Figure 2(b) shows the effect of
interblade phase angle on the aeroelastic stability of a given blade row under various wall
admittance. In particular, note that for a hard wall case plotted in a solid line the blade is
unstable when the interblade phase angle ranges between p and 2p, while the blade can
become stable in all the range of interblade phase angles from 0 to 2p by letting the wall
admittance ba have the value (030,010). However the blade may become more unstable
for ba ¼ ð015;�009Þ if the interblade phase angle takes value around s ¼ 31. Therefore,
from the point of view for stabilizing the blade, on the one hand, Figure 2 has actually
shown that the soft wall has a positive effect on the stability for the given conditions. On
the other hand, it also shows the possibility of reducing the aeroelastic stability for some
wall admittance condition.
Note that Figure 2(b) indicates that the most unstable point corresponds to the

interblade phase angle s ¼ 558, which has its maximum positive moment coefficient CMai

=00573. It may be important to know how this critical point responds to the wall
admittance. In fact, Figures 4 and 5 give more detailed information about the variation of
the lift and moment coefficients with wall admittance. In these two plots, the wall
admittance is expressed by its absolute value and argument; the latter is taken as the
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Figure 4. Variation of moment coefficient due to torsional motion with wall admittance: 1. hard wall, jbaj ¼ 0,
2; soft wall, jbaj ¼ 02; 3. soft wall jbaj ¼ 05. Besides, s ¼ 558, l ¼ 01, y ¼ 35, space/chord=38, span/
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independent variable for the x-axis. It is found that for both jbaj ¼ 03 and jbaj ¼ 05, CMai

is less than that for the hard wall case. In spite of this, the blade will still remain unstable
when the argument varies from �157 to �10. However, it can be found that there are
some points which enable the blade to be stable between �10 to 10. These results
illustrate that a soft wall can have a positive or negative effect on suppressing blade flutter,
depending on the admittance value that the wall possesses.

3.6. Numerical Results for a Rotor Blade-Row

As indicated above, if the incoming velocity Ur along the chordwise direction and
other geometrical conditions remain the same, the upwash integral equation for both a
stator blade-row and a rotor blade-row with a hard wall will have the same expression.
However, for a soft wall their integral equations will have differences in two aspects. First,
there is an additional term for the expression of kernel function of a rotor blade-row,
which is related to the circumferential Mach number Mt of the blade. Second, the
transformation between a duct-fixed coordinate and a blade-fixed coordinate will lead to
the shift of perturbation frequency of the blade; this means that the real frequency
interacting with the wall will be different from that for a stator blade row. In fact, it can be
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Figure 5. Variation of lift coefficient due to torsional motion with wall admittance. The other conditions are
the same as in Figure 4.
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shown from equation (64) that,

ot ¼ ob þ Brðs0 � nÞO; n ¼ 0;�1;�2; . . . ; ð86Þ

where s0 ¼ s=2p and Br is the blade number of the rotor.
Equation (86) shows that the frequency in a duct-fixed coordinate not only depends on

the speed of rotor O but the interblade phase angle s. Perhaps the more important feature
from this expression is that for a stator blade-row where all modes interact with the wall in
the same frequency, while for a rotor blade-row each mode has its own frequency which
corresponds to different mode number n shown in equation (86). Hence, for a rotor blade-
row, it will be unreasonable to assume that the wall has the same admittance for all modes.
This actually means that, if one hopes to control the aeroelastic stability of a given blade
row through the wall, it must be designed to have required frequency response for each
mode, at least for some principal modes, to affect the blade aerodynamic loading. As a
theoretical analysis, Figures 6 and 7 give the results under the assumption that, if
circumferential mode number jnj510, ba has a given value, otherwise ba ¼ 0. These plots
clearly indicate that even though a few modes are controlled through the wall, it can be
still found that the lift, moment coefficients and the stability of the blade will all be
changed prominently compared with the results for the hard wall case.



-2.0 -1.0 0.0 1.0 2.0
0.00

0.25

0.50

0.75

3 2

1

M
om

en
t  

co
ef

fic
ie

nt
, C

M
�r

-2.0 -1.0 0.0 1.0 2.0
-0.25

0.00

0.25

0.50

3

2
1

Stable

Unstable 

M
om

en
t  

co
ef

fic
ie

nt
, C

M
�i

Arg(�a) 

(a)

(b)

Figure 6. Variation of moment coefficient due to torsional motion with wall admittance: 1. hard wall, jbaj ¼ 0;
2. soft wall, jbaj ¼ 06; 3. soft wall jbaj ¼ 12. Besides, s ¼ 104, l ¼ 005, y ¼ 35, space/chord=38, span/
chord=40, Mr ¼ 05, Mt ¼ 057. These coefficients are referred to an axis position at the mid-chord point.

X. SUN AND S. KAJI644
4. CONCLUDING REMARKS

As has been discussed in the Introduction, control of blade flutter by use of a nonrigid wall
has several advantages compared with the existing method of suppressing blade flutter.
But it leads to numerous theoretical problems which have never been clearly elucidated by
the existing theories. In fact, control of flow by changing the wall boundary condition is a
typical three-dimensional problem. So, a three-dimensional aerodynamic model describing
the physical process will inevitably be required. However, it can be verified that the
eigenfunctions of a duct system containing mean flow will not satisfy the orthogonality
property under a nonrigid wall boundary condition. Besides, an important fact is that the
existing lifting surface theories for unsteady aerodynamics and aeroacoustics of
turbomachines are all based on the assumption of a rigid boundary condition, which
has unitized the orthogonality of eigenfunctions. This means that, in principle, the existing
models cannot be used directly to treat a nonrigid boundary problem. So, how to set up a
new lifting surface model under a nonrigid wall boundary condition will be of particular
importance. In the present investigation, a new lifting surface model has been suggested
based on the application of generalized Green’s function theory and double Fourier
transformation technique, which is expressed as various upwash integral equations and the
corresponding kernel function. It is found that the change of wall boundary condition not
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Figure 7. Variation of lift coefficient due to torsional motion with wall admittance. The other conditions are
the same as in Figure 6.
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only affects the eigenvalues of the system but also the eigenfunction normalizing factor in
comparison with a rigid boundary condition, and it is these variations that finally affect
the flow and acoustic field. On the other hand, it is noted that under a nonrigid boundary
condition the kernel function expression for a rotor blade-row is different from that for a
stator blade-row due to the motion and boundary condition effect, while under a rigid
boundary condition these expressions can be reduced to the same results as those given in
the previous lifting surface models.
Calculation of eigenvalues is another important link for a nonrigid boundary problem.

In the present analysis, various eigenvalue equations have been derived under a given
geometrical condition, and then transformed into an ordinary equation with the
eigenvalue of a rigid wall as its initial value.
Numerical simulation consists of three parts in the present investigation. In the first

part, calculation of eigenvalues under a given wall admittance value is checked, which is in
agreement with the existing results. A special case of the present lifting surface model is
equivalent to the existing theory for a rigid boundary condition. This provides further
means for checking the theoretical results. In fact, the moment and lift coefficients
calculated by the present program show good agreement with those available in literature.
Based on this verification, the calculation is then extended to study the effect of a nonrigid
wall on the flow of a stator and rotor blade-row. It is found that the change of wall
admittance will lead to a remarkable effect on both lift and moment coefficients. Perhaps
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the most important conclusion drawn from the present investigation is that whether a
nonrigid wall has positive or negative effect on suppressing blade flutter will mainly
depend on what admittance value the wall possesses. This conclusion has two additional
implications. First, it is possible to design a liner for suppressing blade flutter. Second,
while modern commercial jet engines all use the nonrigid wall or liner to suppress the
noise, the intrinsic frequency of the liner falls into the same frequency band as that due to
the vibration from a rotor blade-row, which is measured in a duct-fixed coordinate system.
Thus, the present analysis suggests that the frequency placement of the liner can have a
negative effect on the aeroelastic stability. This situation can be remedied at the design
stage.
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APPENDIX: NOMENCLATURE

b blade semichord
h height from the hub to the tip side in the transformed space
h1 stagger distance, measured parallel to chord
h2 gap distance, measured normal to chord
i

ffiffiffiffiffiffiffi
�1

p
kb wave number, kb ¼ ob=a0
%ppm amplitude of perturbation pressure for mth blade
%vv upwash velocity of the reference blade
x; y; z a blade-fixed coordinate system for an observer
x0; y0; z0 a blade-fixed coordinate system for a source
x0; y0; z0 a duct-fixed coordinate system
t time in an observer point
Ab the upper or lower surface of a blade
Aab periphery of a blade
CFqi;CFai imaginary part of blade lift coefficient
CFqr;CFai real part of blade lift coefficient
CMqi;CMai imaginary part of blade moment coefficient
CMqr;CMar real part of blade moment coefficient
H height from the hub to the tip side
Mx Mach number in x0-direction
My Mach number in negative y0-direction
Mt Blade circumferential Mach number in mean radius
Ur mean velocity in chordwise direction
Vn normal velocity of a body boundary

Greek letters
a wave number in x-direction
b wave number in Z-direction
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ba wall admittance
Zz independent variable of wall admittance
Z0m source coordinate for the mth blade
y blade stagger angle
l reduced frequency based on blade chord
Lh;Ls;Lv eigenfunction normalizing factor
x; Z; z a blade-fixed coordinate system for an observer,

in the transformed space
x0; Z0; z0 a blade-fixed coordinate system for a source,

in the transformed space
xp particle displacement
xpa amplitude of particle displacement
x0m source coordinate for the mth blade
xpi particle displacement inside the surface of a liner
xpo particle displacement outside the surface of a liner
r perturbation density
r0 mean density
s interblade phase angle
t time in a source point
o angular frequency
ob perturbation frequency of blade force
D %ppm amplitude of pressure difference for the mth blade
O rotating speed of rotor
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